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This paper examines whether G. K. Batchelor’s (1988) theory of the propagation 
of planar concentration disturbances and the occurrence of instabilities in uniform 
fluidized beds can be applied to bubbly flows. According to this theory the propagation 
of long weakly nonlinear gas volume concentration waves is governed by the Burgers 
equation. Experiments on the propagation of weak concentration shock waves 
and small, but finite, amplitude periodic waves are presented; good agreement is 
found with classic solutions of Burgers’ equation. For example, the phenomenon 
of amplitude saturation, familiar from nonlinear acoustics, is established here for 
concentration waves. Batchelor’s instability conditions are given for bubbly flows, 
and his model for the bulk modulus of elasticity of the dispersed phase is used to 
obtain estimates of the critical volume concentration at which a uniform bubbly flow 
becomes unstable to planar disturbances. Observations of the onset of instabilities 
of bubbly flow in a pipe are described, and compared with what would be expected 
from Batchelor’s theory. 

1. Introduction 
Observations of bubbly flows in a vertical cylindrical pipe show that upon increasing 

the gas flow rate into the lower end of the pipe a uniform bubbly flow changes 
structure and becomes a kind of agitated, ‘turbulent’ bubbly flow. This turbulent flow 
is characterized by large collections of bubbles that violently move about in a kind 
of zig-zag motion. The transition first appears in the upper section of the pipe, and 
upon further increasing the gas flux the point of transition moves downwards. Since 
a larger gas flux leads to a larger gas volume concentration everywhere in the pipe, 
and since the volume concentration increases with height along the tube, due to the 
loss of hydrostatic head, this suggests that there is a critical value of the gas volume 
concentration associated with the flow transition. For still higher gas fluxes the gas 
bubbles within the region of turbulent flow begin to coalesce, and eventually large 
gas plugs are formed that fill the entire cross-section of the pipe. The flow changes 
into a regime in which gas plugs move upwards with high speed, separated by regions 
with an approximately uniform bubbly fluid. 

The above-described behaviour may be compared to what is observed in liquid- 
fluidized beds. Didwania & Homsy (1981) conclude from experiments in a narrow, 
two-dimensional bed that increasing the liquid flow rate changes the regime of 
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uniform fluidization into a wavy regime. The voidage waves first appear in the 
upper part of the bed; at higher liquid flow rates the waves are also observable near 
the distributor. Initially the waves have planar form, but as they travel upwards 
they develop transverse structure. At higher liquid flow rates the bed becomes 
‘turbulent’, and occasionally ‘bubbles’, regions devoid of particles, appear. Finally, 
a sudden transition to the bubbly regime of fluidization takes place. In wider 
beds the transition is slightly different (El-Kaissy & Homsy 1976). In that case 
the planar voidage waves in the lower part of the bed become convex as they travel 
upwards, start to zig-zag, and coalesce with other waves. Then another coherent wave 
forms, which eventually breaks up into small high-voidage regions or into bubble-like 
clusters. 

So it seems that the transition towards a ‘turbulent’ bubbly flow regime and the 
formation of regions with large numbers of bubbles resembles what is described 
by Didwania & Homsy (1981), but for the difference, of course, that in fluidized 
beds the particles are expelled from, rather than attracted to, certain regions within 
the turbulent flow. Note that no developing plane wave trains in the bubbly flow 
have been observed by us; occasionally regions of high bubble volume concentra- 
tion could be seen, that executed zig-zag motions as they moved upwards with high 
velocity into the ‘turbulent’ part of the flow, and these perhaps resemble the struc- 
tures decribed by El-Kaissy & Homsy (1976). It is generally agreed that the initial 
stage of the transition from uniform fluidization to a bubbly type of fluidization 
is due to an instability of the flow to planar voidage disturbances, and it is rea- 
sonable to examine whether this is also the case in the flow transition of bubbly 
flows. 

Now, in a beautiful analysis of the conditions under which uniform fluidized beds 
are unstable to planar voidage disturbances Batchelor (1988) showed that when spatial 
gradients are sufficiently small, the mass and momentum conservation equations of 
the particles, in a reference frame in which there is no net volume flux of material, 
are given by 

d 4  a4 av 
- + I/- + 4- = 0, 
a t  ax ax 

Here 4 and V denote the volume concentration and the mean velocity of the particles, 
U ( 4 )  is the mean velocity of the particles in a homogeneous dispersion with volume 
concentration 4 when the particles move only under the action of gravity. The 
constant y depends on the functional relationship between the mean frictional force 
and the mean particle velocity under uniform conditions. It takes a value between 
1 and 2, with the value 1 when the flow around the particles is described by the 
Stokes equations, and the value 2 in the case of large particle Reynolds numbers. The 
position-coordinate is positive in the downward direction, and the reduced gravity is 
defined by 

g = g -  PP - Pf 
P P  

in which pp and pf respectively denote the density of the particles and the fluid (gas 
or liquid). 
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The first two terms on the left-hand side of (1.2) represent the acceleration reaction 
of the particles in a uniform suspension. The functions O ( + )  and ( (4) are related to 
the added mass coefficient C ( 4 )  through 

The other two terms in the momentum conservation equation represent the mean 
force per unit mass of the particles which arises in a non-uniform dispersion because 
of momentum transport by velocity fluctuations of the particles, and by forces which 
the particles exert on each other hydrodynamically; 4 p p Q ( + )  is the bulk modulus of 
elasticity of the particles and +p,q($) is an effective particle viscosity. These express 
in the usual manner the resistance to deformation of the particle configuration, i.e. of 
their relative positions and velocities. 

The arguments used by Batchelor to formulate these conservation equations apply 
equally well to bubbly flows. Then one would prefer the position-coordinate to be 
positive upwards, which is achieved simply by redefining the reduced gravity as 

where now pp has been replaced by ps, the density of the gas bubbles, and p f  by P I ,  
the liquid density. 

In this paper we try to verify Batchelor's theory by studying the propagation of 
concentration waves in uniform (stable) bubbly flows, and by examining the onset of 
transition. In $2 it is shown that the propagation of weakly nonlinear long-wavelength 
disturbances in uniform bubbly flows is governed by the Burgers equation. In $3 
Batchelor's stability criteria are given, followed by a brief derivation of the equations 
describing the development of planar weakly nonlinear unstable disturbances. At 
present it does not seem to be possible to make quantitative predictions of the critical 
value of the volume concentration at which the instability occurs for the bubbly flows 
that we have studied experimentally. But some insight is gained from estimates for 
bubbly flows with small, approximately spherical bubbles; these are given in 94. That 
the Burgers equation applies is demonstrated in experiments on step-like and periodic 
concentration disturbances, for which well-known solutions of the Burgers equation 
are available from the theory of nonlinear acoustics. The measurement techniques and 
the methods of data analysis are described in $5 and $6, followed by a description of 
the experimental results on concentration wave propagation in $7, and the transition 
to turbulent bubbly flow in $8. We conclude with a summary. 

2. Concentration waves 
Suppose that a uniform bubbly fluid is characterized by a gas volume concentration 

qbo and a mean bubble velocity U(40)  = UO, the latter defined with respect to a zero- 
volume-flux reference frame. To obtain a description of the disturbed flow we use the 
velocity UO and either the time scale T or the length scale A 'u UoT of the imposed 
disturbances to render the conservation equations (1.1) and (1.2) dimensionless. These 
become 

2 4  - a $  aV 
- + v- + 4- = 0, 
iii ax ax 
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v - u  
- - -Xyli) F . (2.2) 

Here we have introduced the non-dimensional variables 

t = tUo/A, X = X / L ,  V = V/Uo,  U = U/Uo,  Q = Q/U,’, ij = y/UOA; 

the suffix 0 means that the functions are to be evaluated at the volume fraction of 
the undisturbed flow, and the dimensionless numbers F and R are defined as 

(1 + Q0)lUOla , R =  (1 + fl0)Uo2 F =  
Y Ig”V ?I0 

The first number can be interpreted as the ratio between the relaxation time of the 
bubbles, (1 + B)U/yg,  and the time scale of the disturbances. 

Batchelor proposes representing the particle viscosity y by 

Y = Palul, (2.3) 

with p a constant of order unity, and a denoting the radius of the particles. For 
bubbly flows a reasonable representation seems to be 

PI y = p-uju1. 
P g  

The numbers F and R roughly scale as F - ((1 + O)(u/A)7 with particle Froude 
number 4 = U,2/yalgl, and R-’ - (1 + e)-’(a/A) (for fluidized beds) or R-’ - a/ / l  
(for bubbly flows), and thus should both be small for consistency with the use of a 
continuum approach and the application of Batchelor’s theory. 

If we assume then that F 4 1 and R %- 1, a first approximation is obtained by 
neglecting the left-hand side of (2.2). This yields v = U ,  and upon substitution 
in (2.1), 

written again in physical variables. This represents a simple wave propagating with 
velocity @(dU/d#) with respect to the bubbles. The solution can be obtained by 
Riemann’s method, fitting in ‘concentration shocks’ where it becomes multi-valued 
with Whitham’s rule (e.g. Whitham 1974). Since dc/d# < 0 for bubbly flows, the 
shocks break backwards, i.e. the volume fraction in front of the shocks is larger than 
at the back. This description of the wave motion is that of the well-known Kynch 
(1952) theory of sedimentation waves. 

An approximate equation describing weakly nonlinear waves can be derived by 
substituting 

in (2.1) and (1.2), and retaining only terms of O ( f )  and O(F) .  This yields, in physical 
variables, 

# = # O + € # ’ ,  v = 1 $-a’; f 4 1, (2.5) 

with velocities co and c1 given by co = ~ ( 4 ~ )  and c1 = (dc/d4)++,,. This is Burgers’ 
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equation in the form appropriate to signalling problems. The diffusivity 9 is defined 
as 

in which the functions of the volume concentration should be evaluated for 4 = 40. 

(Note that this expression differs from that in Batchelor (1988, equation (3.18)), who 
does not include the acceleration-reaction effects.) 

That Burgers’ equation would be obtained could have been anticipated, of course, 
by recognizing that the assumption R B 1 puts the conservation equations in a form 
that is equivalent to the well-known wave-hierarchy problems studied by Lighthill 
and Whitham (see Whitham 1974). They showed that, in the order of approximation 
considered here, the ‘dynamical’ effects represented by the first three terms on the left- 
hand side of (2.2) have a diffusive effect on the ‘kinematic’ waves described by (2.4). 
Combination of weak nonlinearity in the simple wave description with linear diffusive 
effects yields Burgers’ equation. 

3. Instability 
To obtain the conditions at which a uniform dispersion with volume concentration 

40 is unstable to arbitrary infinitesimal perturbations one first linearizes the con- 
servation equations. If it is next assumed that the disturbances are proportional to 
expjiti(x - c t ) ) ,  with complex phase speed c and real wavenumber K ,  it follows that 
c has to satisfy the relation 

Here 

and we have dropped the suffix 0. From the solution of. this equation Batchelor (1988) 
then deduces that the condition for instability of the flow reads 

By considering the limit K + x, it becomes clear that a sufficient condition for 
instability is that Q < 0. This is as expected, because then the disperse phase has 
negative elasticity. To consider the case Q > 0, note that the left-hand side of the 
above expression obtains a maximum for some wavenumber ti = ti,, which in general 
will depend on the values of the functions U ,  0 and q. Provided that 

a condition that holds for fluidized beds and also for bubbly fluids, this maximum 
is reached for K ,  = 0. Thus a dispersed flow will lose its stability at a value of the 
volume concentration 4 such that 

Q - W ( ( l +  0)W + [ U )  < 0. 
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Using the definitions of W and [ this condition can be rewritten as 
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Comparing this with (2.7) it appears that the instability is associated with a negative 
effective diffusivity of long-wavelength disturbances. Strictly speaking equation (2.6) 
does not apply close to the critical value of the volume concentration, but as will be 
seen below the inference is still true. 

For gas-fluidized beds pf 4 pp, so that 6 4 1. The condition for instability of the 
bed then reduces to 

Earlier models for the behaviour of gas-fluidized beds did not include a term express- 
ing the bulk elasticity of the particles. The conclusion then must be that uniform 
gas-fluidized beds are always unstable. For bubbly fluids p~ + pg, i.e. 6 9 1, and the 
condition for instability reads 

Since in general the mean velocity of rise of the bubbles becomes less with increasing 
void fraction, it appears that when the bulk elasticity of the bubbles is absent in 
a description of the bubbly flow, the instability condition has the very simple form 
d(CU)/d4 < 0. This expression can for instance be found in van Wijngaarden 
& Biesheuvel (1988). There is a simple interpretation. Suppose that an element 
of the dispersion is given a virtual displacement to a region with higher volume 
concentration. Since the impulse is conserved the change in the mean velocity of the 
bubbles in this element is 

On the other hand, the mean velocity of the surrounding bubbles, 'in equilibrium' 
because of a balance between gravity forces and viscous drag forces, is less than that 
of the bubbles at the original location by an amount 

dU 6 U  = -64. 
d 4  

It follows that when (6v( > ( 6 U ( ,  i.e. when d(CU)/d$ < 0, a virtual displacement 
to a region with higher concentration will cause the bubbles reach a velocity which 
is sufficient to push them to regions with still higher concentration; the system is 
unstable. Incidentally, note that when d(CU)/d4 > 0 the flow can only be unstable 
when the bulk elasticity is negative. 

Information on the correct expression for the bulk elasticity is absent, but Batchelor 
suggests by an elegant argument that it can be written as 

The first contribution arises from the hydrodynamic interaction forces between the 
particles which cause a diffusive flux of particles in the presence of a concentration 
gradient, with diffusivity D ( 4 ) .  The second contribution represents transport of mean 
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particle momentum due to velocity fluctuations, with H (  4 )  a function that vanishes 
as 4 -+ 0 and at closest packing. For bubbly flows the latter contribution is negligibly 
small of course, and one therefore expects that the condition Q > 0 is not violated. 

It appears that what is required to obtain numerical estimates for the instability 
condition of uniform bubbly flows is a knowledge of the functions U ,  C, Q (or D). 
At present these estimates can only be given for flows with bubbles of approximately 
spherical shape; we will do so in the next section. 

3.1. Weakly nonlinear unstable waves 
A large number of papers have been written on the onset and the further evolution of 
instabilities in fluidized beds; with Batchelor's work as the most prominent exception 
these all used a two-fluid model as a starting point. Batchelor (1991, 1993) showed that 
as soon as gas-fluidized beds become linearly unstable to planar vertical disturbances 
the conditions are satisfied for a transverse structure to develop. On the other hand 
the experiments of Homsy and colleagues, described in the Introduction, clearly 
show that in 1iquid:fluidized beds the planar disturbances can grow to a considerable 
amplitude before they lose stability. It is therefore remarkable that almost all of 
the literature (e.g. Liu 1983; Ganser & Drew 1990; Harris & Crighton 1994) on the 
nonlinear development of planar unstable waves has been concerned with gas-fluidized 
beds ; exceptions are Didwania & Homsy (1982) who look at liquid-fluidized beds, 
and Hayakawa, Komatsu & Tsuzuki (1994) who give an analysis for arbitrary values 
of the ratio p f / p p .  It seems appropriate to briefly consider the equations governing 
the growth of the unstable waves as they follow from Batchelor's equations; a full 
discussion of their evolution is beyond the purpose of our paper. 

First, it is useful to introduce the velocities 

from which expression (2.7) for the diffusivity can be written as 

9= ( 1 + 6 ) u ( c + -  W)(W-C-) .  
Yg" 

Batchelor's second criterion for instability (3.3), or equivalently 9 < 0, therefore 
implies that instability occurs when the condition (c+ - W ) (  W - c-) > 0 is violated. 
Both for bubbly flows and fluidized beds condition (3.2) holds, which can also be 
written as W - i (c+ + c-) > 0. Clearly this implies that the instability is associated 
with c- becoming less than W .  

Next, to obtain estimates for the non-dimensional numbers F and R it is necessary 
to have an estimate of the characteristic length scale of the disturbances. From 
condition (3.1) it can be inferred that the wavenumber at neutral stability, K = IC,,, is 
given by 

The wavenumber at which the maximum growth rate occurs is roughly of this order. 
Thus if this would be an appropriate choice for the length scale we should have 

(3.5) 
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By substituting (2.5) and using the scalings 

F = O ( E ’ / ~ ) ,  R-’ = O ( E ” ~ ) ,  \(c+ - W ) ( W  - c-)I/U* = O ( E )  

it is now straightforward to show that to first order the disturbances are described 
(in physical variables) by 

a 84’ 
~ at + ( U  + W ) -  ax = 0, 

and to O ( E )  by 

where of course it is again understood that the coefficients are to be evaluated for the 
value of the volume concentration of the undisturbed flow. Initially the disturbances 
propagate with the ‘kinematic wave speed’ without change of form, but after a time 
of O(e-’) nonlinear and dispersive effects become important. At this stage the waves 
are described by the Korteweg-de Vries equation. 

To O(c3l2) the pertinent equation becomes 

This shows that the effects of a negative diffusivity become essential at a time of 

Similar evolution equations for instabilities in dispersions have recently been given 
by Hayakawa et al. (1994, see their equations (27)  and (30)). These authors criticize 
the validity of other equations that have appeared in the literature on fluidized beds; 
our analysis seems to lend support to their criticism. The form of the evolution 
equations one obtains from an approximate analysis of the full equations depends on 
the choice of scaling of the dimensionless numbers F and R-l, and on the value of the 
particle viscosity q in particular. Ganser & Drew (1990) and Harris & Crighton (1994) 
take the value of a number that plays a similar role as our number R, and which is 
also related to some kind of particle viscosity in their two-fluid model formulation, 
to be of order one. The formulation (2.3) of the particle viscosity as it is present in 
Batchelor’s conservation equations, implies that R-‘ must be small for consistency. 
Our experiments show beyond doubt that dispersive effects are negligibly small in the 
propagation of long-wavelength concentration waves; this would not have been the 
case if the value of R were of order one. 

0 ( € - 3 / 2 ) .  

4. Estimates for dispersions with small bubbles 
In the experiments that are described below we were not able to produce large 

numbers of bubbles with diameters less than 2.8 mm. For relatively large bubbles 
information on the functions that determine concentration wave propagation and the 
criteria for instability is lacking, so that a quantitative comparison between theory and 
experiments is not possible. However, estimates of the flow parameters of dispersions 
with small equally sized bubbles with equivalent radius in the range 0.5 mm to 1.3 mm 
rising in pure water can be given, and it is useful to do so. 
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U ( 4 )  = U%(1 - 4)p ,  

7s 

The mean velocity of rise of the bubbles is usually expressed in the form 

(4.1) 

where U ,  is the velocity of a single bubble rising under the action of gravity in an 
infinite liquid, and p is a constant which depends on the physical properties of the 
two phases. For bubbly flows the value of p is usually found to be within the range 
1.5-2.3. Single bubbles with equivalent radius less than 0.9 mm rise in a straight line 
and have oblate ellipsoidal shape. An approximate expression for their velocity has 
been derived by Moore (1965): 

where x is the ratio between the major axis and the minor axis, and 

The deformation follows from (4.2) together with a relation for the Weber number 

2pl U,'U (x' + x - 2)(x2 sec-' x - (x2 - 1)1/2)2 
W(X) = = 4  x4/3(72 - 1)' 3 (4.3) 

where 0 denotes the coefficient of surface tension. Bubbles with an equivalent radius 
in the range 0.9 mm to 1.4 mm perform a spiralling motion. The deformation 
can also be calculated to a good approximation from (4.2) and (4.3), where now 
expression (4.2) gives the (approximately constant) speed along the bubble trajectory; 
the mean speed of rise is about 10 YO less (Duineveld 1994). 

A good approximation for the function C ( 4 )  is 

with 

As already mentioned by far the most dominant contribution to the elasticity Q is 
the first term in expression (3.4). Not much is known about the function D ;  Batchelor 
proposes writing 

D ( 4 )  = x a / U /  = ga/U,/(1-  4Ip, 
where x is a constant of order unity. With this choice the expression for the diffusivity 
of long-wavelength concentration waves 

U 

becomes 

with f the bubble Froude number defined as 
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FIGURE 1. Stability criterion for dispersions of equally sized bubbles in water. The function N ( 4 )  
is evaluated for bubble radii 0.5 mm (solid curve), 0.7 mm (- -), 0.9 mm (- -), 1.1 mm (. . .) and 
1.3 mm (- . -). The critical volume Concentration q5c is determined by the point of intersection with 
a horizontal line N = a;  the flow is unstable for 4 0  > 4c. 

The condition for instability (3.3) reduces to 

(4.5) 

In figure 1 the function N is plotted for bubble radii between 0.5 mm and 1.3 mm, 
with the value of p equal to 2. If c1 is known one can draw a horizontal line N = CI 

to find the critical value 4c at which the flow first becomes unstable. The distance 
between this horizontal line and the curves is also a measure of the relative importance 
of bubble inertia and gradient diffusion to the attenuation of concentration waves; 
the latter appears to be the dominant effect for concentrations well below the critical. 
Note that 4c strongly varies with the bubble size and the value of a, which will 
make it difficult to give accurate predictions of the critical volume concentration for 
practical systems. Also note once again, that in pipe flow experiments the volume 
concentration will increase along the pipe because the bubbles grow in size due to 
the loss of hydrostatic head; thus even though the flow may be stable in the lower 
part of the pipe, it may eventually become unstable higher up. 

5. Experimental techniques 
5.1. Experimental facility 

The experimental facility in which Batchelor’s (1988) theory was tested is basically the 
same set-up as was used by van Wijngaarden & Kapteyn (1990) for their experiments 
on concentration shock waves in dilute bubbly flows. It consists of a Perspex tube 
with 8 cm inner diameter and 5.5 m length, mounted on an inlet section in which 
bubbles are produced by injecting air through 150 needles with an inner diameter of 
0.5 mm. Each of the needles (Hamilton) is placed in a small channel; by adjusting 
the water flow rate through these channels a bubbly fluid with nearly equally sized 
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bubbles is produced. The gas flow rate is set by three mass flow controllers (MKS) 
and the water flow rates, one past the needles and the other into the riser, are 
set by frequency-controlled (Scand- Ac) gear pumps (Liquiflo). When generating 
concentration waves care was taken to maintain a constant total volume flow of the 
two phases, as is assumed in the theory. The water was ordinary tap water; no 
special treatment was given to remove surfactants. The set-up has been operated with 
co-current and counter-current flow, with superficial liquid velocities ranging from 
-0.04 to +0.18 m s-' and gas volume concentrations up to 45%. 

5.2. Measurement of bubble size 

The bubble size is measured by sucking bubbles out of the flow into a glass capillary 
with accurately known inner diameter. In the capillary the bubbles are stretched 
into long slugs, that are forced to move past two optical sensors. When a slug 
passes a sensor this will give a block pulse; from the time lag between the pulses 
and the duration of the pulses the slug length can be calculated. The equivalent 
bubble diameter appeared to increase with the gas flow rate (and so with the volume 
fraction): from 2.8 mm to 4.2 mm, with a constant variance of about 0.6 mm. 

5.3. Measurement of gas volume concentration and mean bubble velocity 
The mean volume concentration under steady flow conditions is determined by 
measuring the pressure drop over a short distance (12.5 cm) along the pipe with 
inverted U-tube Betz-manometers (van Essen). The level difference inside the U-tubes 
is a measure of the volume concentration. 

Estimates of the local values of the volume concentration and the mean bubble 
velocity, again under steady conditions, are obtained by means of optical probes 
(Photonetics), introduced into the flow at 3.35 m above the inlet of the pipe. These 
probes consist of two optical fibres with a diameter of 25 pm with a sharp tip of 
15 pm, placed a distance of 1.8 mm apart. The output of the probes is two trains of 
block pulses; the volume concentration is deduced from the duration of the pulses 
and the mean bubble velocity from the time lag between the bubbles. The measured 
volume fraction is very sensitive to the discriminator level used to distinguish between 
the water and the gas phase: e.g. averaging the local volume concentration over the 
cross-section always gave lower values, relatively lo%, than found with the Betz- 
manometers. Errors also occur when determining the mean bubble velocity, so that 
the volume concentration and mean bubble velocity profiles shown in figure 12 ($8) 
only give qualitative information. 

The measurements with the optical fibre probes show that as long as the flow is 
not turbulent, the volume concentration and the mean bubble velocity are nearly 
uniform over the cross-section of the pipe. Therefore the mean bubble velocity can 
be obtained accurately from measurements of the mean volume concentration. If yiz, 

and yizl denote the mass flow rates of gas and liquid respectively, and the diameter of 
the tube is D ,  then the mean bubble velocity in a zero-volume flux frame is given by 

The local gas density is determined from the pressure drop in the pipe, by assuming 
that the gas behaves isothermally. 
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5.4. Detection of volume concentration waves 
The concentration waves are recorded by four impedance probes at 0.87 m, 2.04 m, 
3.22 m, and 4.47 m above the inlet of the pipe; the probes were newly designed and 
differ from those used by van Wijngaarden & Kapteyn (1990). A probe consists of 
two 1 mm thick stainless steel measuring electrodes of 90" arc and 1.6 cm height, 
shielded by two pairs of similar electrodes that are isolated from the measuring 
electrodes by buffer amplifiers. The latter ensure that the voltage difference over the 
pairs of shielding electrodes is equal to that over the measuring electrodes; in this 
way a good sensitivity to axial concentration disturbances is achieved. Details of the 
electric circuit are given in Lammers (1994). A measuring electrode forms part of a 
Wheatstone bridge, in which it is placed in the same branch as a variable resistor 
that serves to balance the bridge. The bridge is operated with a carrier frequency of 
5 kHz and an input voltage of 0.5 V. The resistor value of the bubbly fluid, R,, is 
nonlinearly dependent on the volume concentration. On the other hand, the bridge 
output voltage U, depends nonlinearly on the resistor value: 

here 6 denotes the input voltage, the resistor values of the fixed branches are R1 
and R2, and that of the balancing branch is R,. If it is assumed that the effective 
conductivity of the bubbly fluid 0 depends on the volume concentration according 
to von Bruggeman's relation 0 = ol( 1 - 4)3/2, with 01 the conductivity of the fluid, 
then this would imply that the nonlinearities cancel exactly with the choice of a 
resistor ratio of 1:5 in the fixed branch of the bridge. This would yield a measuring 
system with a linear response, i.e. with (d2U, /d42)Z i ,=~  = 0. Calibration with a 
Betz-manometer showed that this was indeed the case. 

The output signals of the Wheatstone bridges are filtered by low-pass filters 
(KEMO) that give virtually no signal distortion when not very close to the cut- 
off frequency, which was typically 8 Hz to 10 Hz. An industrial PC was used for 
control and storage of raw data, analysis being done off-line. 

From measurements with cubic arrays of polystyrene spheres van Wijngaarden & 
Kapteyn (1990) deduced that their impedance probes had a step response of 

&(t) = + tanhsy) 

with s = 115 m-'; 4s is the amplitude of the imposed signal and y = x - ct, with 
c the wave speed. This means that the response I ( k )  for a wave component with 
wavenumber k is 

kn 
2s sinh(knl2s)' 

which for long waves can be approximated by 

Z(k)  = 

I ( k )  N 1 - !f (!)>?. 
24 s 

For wavelengths larger than 12.5 cm ( k  < 50 m-'), as in our experiments, the deviation 
from unity would be less than 8%. For more general wave shapes one estimates that 
the detected signal behaves as 
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FiGuRF 2. Longitudinal variation of the mean volume concentration for various superficial liquid 
velocities j , ;  W. experiments; -. model. The distance between ‘bottom’ and ‘top’ is 4.35 m; the 
values of j ,  are in m s-’. 

For the original bridge system of van Wijngaarden & Kapteyn (1990) most of the 
signal distortion is associated with the tail of the response function, and was caused by 
cross-talk between the measuring electrodes and shielding electrodes. Their work was 
concerned with rather thin shock waves; using (5.2) the distortion of a concentration 
shock wave with thickness of e.g. 5 cm can be estimated as 10%. We performed 
experiments on much weaker shocks with thickness in the range 5-20 cm; and since 
our improved design of the bridge circuit eliminates the tail of the response function, 
this justifies the neglect of distortion when analysing the data. 

5.5. Longitudinal variation of the rolurnr concentration 
For the calibration of the impedance probes during experimental runs (to check on 
runaway of the bridge system) it is useful to have a model which allows a calculation of 
the longitudinal concentration variation from a measurement with a Betz-manometer 
at just one location. This model follows from the condition that the mass flux of gas 
is constant, i.e. dtn,,dx = 0. Differentating (5.11, and using 

dp, = ___ 1 dP/ - P / ( l  - 4k - 
dx WT dx X T  ’ 

where 9 denotes the gas constant and T the temperature, yields 
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Here j l  = 4m1/p17cD2 is the superficial liquid velocity. Once a relationship for U ( 4 )  is 
determined from experiments, equation (5.3) can be integrated numericallly to obtain 
(6(x), if the concentration at one particular location is specified. Examples are shown 
in figure 2, where measured values of the volume concentration for four different flow 
rates are compared with calculations from a specification of the volume concentration 
just above the pipe inlet. To exemplify the longitudinal variation more clearly the 
bisector is also drawn. The model works well up to the point where the flow instability 
sets in. 

6. Experimental procedure 
The increase in gas volume concentration along the pipe can be accounted for in 

the theory by replacing the right-hand side of (1.1) by a term i + V ,  with 2 defined 
as i = -(l/p,)dp,/dx. The weakly nonlinear wave equation then becomes the 
generalized Burgers equation 

+ 24’. 

The strength of the source term can be estimated from the relation 

which yields a typical value 

2 = plg(1 - 4 ) / p l  2: lo3 x 10 x 0.88/1.3 x lo5 N 0.07 m-’. 

Whether the propagation of long, weakly nonlinear concentration waves is governed 
by the generalized Burgers equation (6.1) has been examined by comparing the 
evolution of imposed concentration disturbances with solutions to this equation. 
The comparison was done by a fit procedure with the velocities co and c1 and the 
diffusivity 9 (for periodic disturbances), or cg and the combination c1 /9  (for step- 
like disturbances), as free parameters. This lead to excellent matches between the 
calculated and the recorded wave profiles, and to a consistent set of values for the 
free parameters, so it effectively was a method of measuring the diffusivity 9. 

6.1. Periodic concentration waves 
The propagation of sinusoidal finite-amplitude disturbances has been studied for 
superficial liquid velocities in the range -0.04 to 0.16 m s-’ and for mean volume 
concentrations up to 32%. For measuring of the diffusivity 9 data analysis was 
performed on nine time series, with four different imposed frequencies and amplitudes. 
From each time series 64 wave cycles were taken, and 128 points per cycle; the 
sampled signal of an electrode was then used as a boundary condition in a numerical 
calculation of the wave evolution by a pseudo-spectral method with 1024 harmonics, 
and the result subsequently ‘compared with the spectral decomposition of the sampled 
signal of the next electrode higher-up: i.e. with an iteration procedure that uses the 
source frequency and a few harmonics (typically 4), values for the diffusivity 9 and 
the velocities co and cl are calculated that give the best fit for all nine time series. 
Further details may be found in Lammers (1994). 

We have also done calculations with a dispersive term added to the wave equation, 
with the dispersion coefficient as an additional free parameter in the fit procedure, but 
were not able to obtain a definite value for this very small coefficient. The structure 
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of the shocks that form within the periodic waves show hardly any asymmetry, which 
also indicates that dispersive effects are not pronounced. 

6.2. Concentration shock waves 

The effects of bubble growth can be neglected when analysing the structure of 
concentration shock waves. It follows from Burgers’ equation that upon step-wise 
lowering of the gas flow rate a concentration shock wave (an expansion shock) will 
form after a time of the order l 6 ? / ( ~ ~ ( 4 ~  - 42j)’, with a structure described by 

Here 41 is the volume fraction in front of the shock, 4’ that behind > 42); c1 
and 9 are to be evaluated for the mean volume concentration @,,[ = ;(4] + 42j, and 
the shock speed is given by 

For experimental verification it is convenient to define the shock-wave thickness ds 
as the distance between the points where the tangent line through the inflection point 
crosses the levels and 4 2 ,  giving 

All experiments on concentration shock waves were performed with stagnant 
water. A good impression of the shock profile could be obtained by averaging the 
recordings of 80 runs. First the volume concentrations far in front of and far behind 
the shock wave were determined for each recording; these were subsequently ‘centred’ 
by requiring that the recorded profiles cut out equal areas between horizontal lines 
at the upper and lower levels, and then the averaging was carried out. Next, a best 
fit to the Taylor solution (6.2) was obtained by a numerical method that uses c l / B  
as a free parameter, and a value of the shock speed U s  determined by a comparison 
between the recordings at two measuring stations. The diffusivity 9 then followed 
by calculating C I  = dco/d$ from the experimentally determined relation (7.1) given 
below. 

7. Experimental results for concentration waves 
7.1. Small-amplitude disturbances 

Measured values of the mean bubble velocity and the speed of small-amplitude 
concentration waves for various liquid flow rates are shown in figure 3; these fit onto 
a single curve when expressed with respect to a zero-volume-flux reference frame. A 
correlation of the form (4.1) yields U ,  = 21.4 cm s-’ and p = 1.70. For single bubbles 
with an equivalent diameter of approximately 3.5 mm, rising in tap water, Haberman 
& Morton (1953) measured velocities of about 23 cm s-’; values of p between 1.5 
and 2.3 are commonly found for bubbly flows in pipes. To verify the relationship 
between the kinematic wave speed and the velocity of the bubbles a polynomial fit 
of the wave speed measurements is first made: 

cg(4) = 0.219(1 - 4)(1 - 3.084 + 2.774’ - 0.55b3), (7.1) 
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FIGURE 3. Measured values of the mean bubble velocity (upper set of points) and linear concentration 
wave velocity (lower set of points) as a function of the gas volume concentration &. The data 
were obtained for superficial liquid velocities of -0.04, 0.00, 0.04, 0.08 and 0.14 m s-I; the data are 
expressed with respect to a zero-volume-flux reference frame. The lower solid curve is a fit through 
the wave velocity data; the upper solid curve is obtained from this fit by using equation (2.4). 

FIGURE 4. Attenuation as a function of the frequency o of small-amplitude concentration waves 
over a distance of 4.46 m in a bubbly flow with a mean volume concentration of 10%. The 
attenuation is well represented by the transmission function H ( o )  given in relation (7.2). 

and then relation (2.4) is integrated, which gives 

V(6) = 0.219(1 - 6)(1 - 1.06 + 0.554'). 

The fit (the lower solid curve) and the result of the integration (the upper solid curve) 
are shown in figure 3. 

Data for the damping of small-amplitude waves over a distance of 3.6 m are 
presented in figure 4; here 4,) = 10%. From equation (6.1) it follows that the 
relation between the attenuation and the angular frequency o can be expressed by a 
transmission function 
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Figure 4 confirms that In H is a linear function of (02. The value of 1nH on the 
abscissa corresponds to 2 = 0.07 m-I, which is equal to the estimate given in the 
previous section; the slope of the line yields a diffusivity of 9 = 2.7 x lop4 m' s-'. 

7.2. Periodic finite-amplitude wives 

To examine the propagation of sinusoidal finite-amplitude disturbances it is useful to 
rewrite (6.1) in variables made dimensionless with the frequency 01 and amplitude & 
of the source-signal. By introducing 

' * = -  ' I  exp (- 1' Idx'), 11 = ___ "' exp (- 1' idx') 
4, cot('1 1'5 

the canonical form 

of the generalized Burgers equation obtained (Nimmo & Crighton 1986). The 
use of the symbol 8 here as well is standard, and will cause no confusion. The 
above formulation shows that the behaviour of solutions of the generalized Burgers 
equation (and thus the propagation of nonlinear acoustic waves) can be studied from 
experiments on volume concentration waves in a pipe of fixed length by varying the 
frequency and the amplitude of the source signal, and, since (6.1) is defined with 
respect to a zero-volume-flux frame, by varying the superficial liquid velocity. 

Some examples of the recorded wave evolution and that obtained by a numerical 
calculation using the sampled wave profile at the lowest measuring station as boundary 
value, are shown in figure 5. The 'wiggly' solid lines are the recorded wave shapes 
at (from top to bottom) 0.87 m, 2.04 m, 3.22 m, and 4.47 m above the inlet of the 
pipe; the dashed lines are the calculated waves. Note that in order to represent 
everything in a single figure the recordings of the three upper stations have been 
shifted in phase. In all these examples the superficial liquid velocity is 0.03 m s-' and 
the mean gas volume concentration at the lowest station is 6%. The imposed wave 
periods are, 4.352 s ( a d ) ,  3.072 s (h,e) and 2.176 s (c, , f ) ;  the imposed signal amplitudes 
are 1.5% (a-cf and 2.0% (d-f). Note that for a clear presentation we chose signal 
amplitudes that are strictly speaking too large for the theory to apply. Nevertheless 
the examples show some of the behaviour typical for the Burgers equation. For 
a fixed signal strength the frequency increases from top to bottom, giving rise to 
stronger diffusive effects and less-pronounced nonlinear steepening. From left to 
right the signal strength increases for a fixed frequency; the nonlinear effects become 
more prominent, and so the wave shapes become steeper. In figures 5 ( d )  and 5(e) 
a shock is formed between the first and second station. In figures 5(c )  and 5 ( f )  the 
wave amplitudes at the upper measuring station have become nearly independent of 
the signal amplitude; the wave profiles are typical for waves in the final stages of 
decay. 

The resemblence of the wave evolution to the familiar features of the sinusoidal 
signalling problem for the 'ordinary' Burgers equation with small ( v  e l), constant 
diffusivity (Crighton & Scott 1979; Crighton 1992), can be seen even more clearly 
in the second set of examples given in figure 6. For these recordings the parameter 
values have been chosen so that the bubble growth effects are unimportant. The 



84 J .  H .  Lamrners and A. Biesheuvel 
0.101 t " " " " I 

i 0.04 } 
0 0.8 1.6 2.4 3.2 4.0 

0.10 I I 

0 0.8 1.6 2.4 3.2 4.0 4.8 

I I 

1 0.04 1 
I I 
0 0.8 1.6 2.4 3.2 

0.10 1 
0.08 

0.06 
4 

0.04 

0 0.4 0.8 1.2 1.6 2.0 

t (s) 

0 0.8 1.6 2.4 3.2 

0 0.4 0.8 1.2 1.6 2.0 2.4 

t 6) 
FIGURE 5. Examples of the evolution of sinusoidal finite-amplitude concentration disturbances. The 
wiggly solid curves are the wave profiles recorded at (from top to bottom) 0.87 m, 2.04 m, 3.22 m, 
and 4.47 m above the inlet of the pipe. The last three profiles have been shifted in order to present 
them in a single figure. The dashed curves are numerically calculated solutions of the generalized 
Burgers' equation with the sampled signal at 0.87 m as boundary condition. In each case the 
superficial liquid velocity is 0.03 m s-', and the meal volume concentration is 6%. Wave periods 
are 4.352 s (a,d), 3.072 s (b,e) and 2.176 s (c,j); signal amplitudes are 1.5% (a-c), 2.0% (d-f). 

'operating conditions', i.e. the values for the superficial liquid velocity j,, the mean 
volume concentration at the inlet of the pipe &,, the signal amplitude 4s, and the 
wave period T ,  are given in the first four columns of table 1. The measured values of 
the diffusivity 9 and the wave velocities co and c1 are given in the next three columns 
of table 1, whereas the last five columns give values of the dimensionless parameters 
v and z ;  the lowest measuring station is at z1 and the highest at z4. 

In figure 6 ( a )  the sinusoidal wave develops into a sawtooth wave with profile 
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jr 40 bS T 9 co CI v ZI 22 z3 z4 

m s-l (%) (%) (s) m2 SKI) (m s-') (m s-l) 

Figure6(a) -0.03 7.0 5.4 15.4 0.25 0.140 -0.80 0.017 0.80 1.88 2.96 4.11 
Figure6(b) -0.03 8.0 5.0 2.56 0.21 0.136 -0.75 0.10 4.39 10.15 16.02 

TABLE 1. The flow parameters for figure 6 

I I 
0 4 8 12 16 20 0 0.64 1.28 1.92 2.56 

t 6) t (s) 
FIGURE 6. Examples of the evolution of sinusoidal finite-amplitude concentration disturbances, 
illustrating (a)  formation and decay of a sawtooth wave, ( b )  the wave entering the old-aged sinoid 
regime. The wiggly solid curves are the wave-profiles recorded at (from left to right) 0.87 rn, 2.04 in, 
3.22 m, and 4.47 m (only in a) above the inlet of the pipe. The last profiles have been shifted in order 
to present them in a single figure. The dashed curves in ( b )  are numerically calculated solutions of 
the generalized Burgers' equation with the sampled signal at 0.87 m as boundary condition. Values 
of the flow parameters are given in table 1.  

approximately described by 

that has internal shocks 

with strength ~ ' I I C ~ / O C ~ X  and thickness ~ W ~ X / ' I I C ~ .  Ultimately the shocks decay, and 
figure 6(b) shows the formation of an 'old-aged sinoid', a small-amplitude sinusoidal 
wave described by 

Both the sawtooth wave and the old-aged sinoid have an amplitude that is independent 
of the source amplitude. 

The phenomenon that with increasing strength of the source signal the amplitude 
of the signal recorded at a point sufficiently far from the source becomes independent 
of the source strength ('amplitude saturation') is exemplified further in figure 7. These 
data were obtained at a single measuring station (station 4 in 7(a),  station 3 in 7(b))  
by varying the source strength while all other flow parameters were kept fixed (which 
implies that vz has constant value). The encircled points correspond to the curves on 
the right in figures 6(a) and 6(b) ,  so that information on the flow parameters can be 
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FIGURE 7. ( a )  Amplitude saturation in the sawtooth-wave regime, illustrated for the first three 
harmonics of a Fourier series representation of the wave profile. The encircled data correspond to 
the wave profile at 4.47 m shown in figure 6(a). ( b )  Amplitude saturation in the old-aged sinoid 
regime. The encircled point corresponds to the wave-profile at 3.22 m shown in figure 6(b).  The 
dashed curves in both figures are obtained from approximate analytical solutions given in the text. 

found in the caption of these figures. Figure 7 ( a )  shows how the recorded amplitudes 
of the first three harmonics of a Fourier series representation of the signal vary as 
a function of the source amplitude. The dashed curves have been calculated from a 
Fourier series representation of the solution of the generalized Burgers equation for 
small values of v ,  essentially by matching the Blackstock solution (Blackstock 1966) 
to a Fourier series represenation of the solution for the ‘embryo-shock‘ region given 
by Lighthill (1956, §8.3), to overcome the singularity at z = 1 in an expansion of the 
amplitude in terms of v. Figure 7(h)  shows the variation with the signal amplitude 
of the recorded amplitude of waves in the old-aged sinoid regime. In this case the 
solid curve has been calculated from the solution of Cole (1951), corrected for bubble 
growth effects, i s .  

Z,(x) is the modified Bessel function. As far as we know amplitude saturation of 
planar nonlinear acoustic waves in the old-aged sinoid stage of development has not 
been demonstrated experimentally before. 

7.3. Concentration shock waves 
Two examples of recordings of concentration shock waves (expansion shocks), to- 
gether with fits based on the Taylor solution, are given in figure 8. Data for the 
shock thickness as a function of the shock strength are presented in figure 9; the 
mean volume concentration is 9.7% in all cases. Clearly the thickness is inversely 
proportional to the strength, as it should be. 

We now confirm that the conditions F Q 1 and R b 1, on which the derivation of the 
Burgers equation in $2 was based, are satisfied in the experiments. An extreme case is a 
concentration shock wave with strength - # 2  = 0.125 -0.075 in a bubbly flow with 
mean volume concentration of 10%. The observed shock thickness is approximately 
5 cm, which is sufficiently large compared to the bubble radius, a N 0.2 cm, to allow 
a continuum approach. The shock speed is Us e 12.5 cm s-’, which yields a time 
scale T N A S / U s  N 0.4 s. A crude estimate of the added mass coefficient is C = 1.8 
and the mean velocity of rise of the bubbles is inferred from figure 3 to be about 
Uo = 0.18 m s-’. Thus F N C U o / y g T  T (1.8 x 0.18)/(1 x 10 x 0.4) 2: 0.08, and 
R-’ 21 j ( a / C U o T )  N /3(0.002/1.8 x 0.18 x 0.4) N 0.02p. Both numbers are small 
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FIGURE 8. Two examples of recorded concentration shock wave profiles (the wiggly solid curves) 
and numerical fits based on the Taylor shock solution (the dashed curves). The mean volume 
concentration is 9.7%; shock strengths are 1.65% and 5.1%, shock thicknesses are 18.8 cm and 
5.0 cm respectively. 
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FIGURE 9. 
proportional to the shock strength & = 
9.7% in each case. 

Data confirming that the thickness A s  of concentration shock waves is inversely 
- $2.  The mean volume concentration (4, + $*)/2 is 

for values of of order one. These estimates also confirm that the scalings used in 
the derivation of evolution equations for weakly nonlinear unstable waves in $3 are 
appropriate. 

7.4. Difusivity of concentration waves 
Values of the velocity cI and the diffusivity 9 obtained from experiments on nonlinear 
periodic waves for volume concentrations up to the critical value, have been collected 
in figures 10(a) and 10th) respectively. These were calculated from samples of the 
recordings at the measuring stations 2.04 m and 3.22 m above the inlet. In the figures 
the number 0 corresponds to measurements with stagnant water, the numbers 4 and 
8 to superficial liquid velocities of 0.04 and 0.08 m s-I, and + indicates a superficial 
liquid velocity of 0.16 m s-I. Figure 10(h) also includes data obtained from shock 
wave experiments in stagnant liquid; these are marked with an S. For comparison a 
solid line calculated from c1 = dco/d4 using the fit (7.1) IS drawn in figure 10(a). 
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FIGURE 13. Values of the velocity c1 (a) and the diffusivity 9 ( b )  determined from experiments 
on weakly nonlinear concentration waves. The data marked by 0, 4, 8, and + are for sinusoidal 
disturbances in flows with a superficial liquid velocity 0, 4, 8, and 16 m s-' respectively; the data 
marked by S are from concentration shock wave experiments in stagnant liquid. The solid line in 
(a) is calculated from a fit through data for the velocity of small-amplitude waves (the lower solid 
curve in figure 3). 

The diffusivity 9 is found to be of order 2.5 m2 s-'. The non-dimensional 
diffusivity 9 / a l U I  is of the order 0.3 to 0.5, and as explained in $4 this is also an 
estimate of the value of a. The diffusivity is markedly higher in the experiments 
with a superficial liquid velocity of 0.16 m s-'. The most likely explanations are that 
turbulence in the liquid phase and non-uniformity of the mean mixture parameters 
over the cross-section enhance the 'diffusive' effects. 

8. Experiments on the onset of flow transition 

flow to turbulent bubbly flow. 
We now describe some observations of the onset of transition from uniform bubbly 

Figure 11 shows how the relationship between the mean velocity of rise of the 
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FIGURE 11. The change in the relationship between the mean bubble velocity and the mean gas 
volume concentration as the homogeneous bubbly flow becomes turbulent. In a turbulent flow the 
mean bubble velocity is larger for a given value of the volume concentration. Measurements a t  
4.97 m (a,b) and 2.97 m (c,d) above the pipe inlet, and for two liquid flow rates: stagnant water (w) 
and superficial liquid velocity j ,  = 0.08 m s-l (b,d). The encircled data are for the case in which the 
flow transition occurs a little below the measuring station. 

bubbles, relative to a zero-volume-flux reference frame, and the mean gas volume 
concentration changes as the bubbly flow becomes turbulent. Presented here are 
measurements for two liquid flow rates, stagnant liquid (a,c) and superficial liquid 
velocity 0.08 m s-' (b,d), and at two positions h along the pipe: at 2.97 m (a,b) and 
4.97 m (c,d) above the pipe inlet. As mentioned before, the transition point moves 
downwards when the gas flow rate is increased; the encircled data in figure 11 are 
for the situation in which the turbulent regime of flow begins right at the measuring 
station, so that the corresponding value of the mean volume concentration is an 
indication of $ c .  

In the case of homogeneous bubbly flow the data for different liquid flow rates 
(the 'lower' set of points in figure 11) fall onto a single curve shown in figure 3; it 
appears from figure 11 that as the flow undergoes transition the mean gas volume 
concentration drops and the mean bubble velocity increases. This is because in the 
region of turbulent flow the bubbles form clusters which move upwards with high 
speed, preferably near the centreline of the pipe, whereas close to the wall the bubbles 
have low speed and may sometimes move downward. 

Remarkable about figure 11 is that the critical value of the concentration depends 
on the liquid flow rate and on the distance from the bubble distributor. This is not 
what would be expected from Batchelor's theory, and we have no explanation for it. 
It is tempting to relate the discrepancy to the sensitivity of $c  on the bubble size, as 
exemplified in figure 1 for smaller bubbles than those in the experiments. It shows 
that for cx > 0.3 and for non-spherical bubbles (diameters larger than 0.7 mm) the 
critical volume concentration increases with the bubble size. In the experiments the 
bubble size varies somewhat with the liquid flow rate and with the gas flow rate, 
smaller bubbles occurring when either of these flow rates is less. Thus if the inference 
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ji h di d c  

m s-’ (m) (mm) (mm) 

0.00 4.97 3.1 3.4 
0.00 2.97 3.3 3.4 
0.08 4.97 3.6 3.9 
0.08 2.97 3.8 4.0 

TABLE 2. The bubble diameters at the pipe inlet and at the measuring station 
at various heights and flow rates 

that q5, becomes larger with increasing size of the bubbles is correct for the bubbles 
in our experiments, this implies that 4c should be larger in the right figures and in the 
lower figures; this is indeed the case. Table 2 gives the values of the bubble diameters 
at the pipe inlet di and at the measuring station d, in the experiments that gave the 
encircled data in figure 11. For equal values of the height h the bubble size d, is larger 
when jl = 0.08 m s-l than when jl = 0.0 m s-’, so that the above argument seems 
to explain why 4, is larger in figures l l ( b )  and ll(d). On the other hand the bubble 
size d, is roughly equal for the same values of j ,  but different heights h, so that the 
argument does not answer the question why, for a given liquid flow rate, q5c is less 
when the point of transition is higher-up in the tube. Perhaps the reason is, in terms 
of Batchelor’s theory, that the diffusivity 9 decreases along the pipe, e.g. because the 
bubble velocity fluctuations diminish as the bubbles rise. We have not found other 
evidence for this. 

Next, figure 12 shows how the radial profiles of the local volume concentration (ah) 
and local mean bubble velocity in a laboratory reference-frame (c,d) change as the 
flow becomes unstable, for stagnant liquid (a,c) and for j ,  = 0.08 m ssl (bd ) .  The data 
were obtained with an optical probe, introduced into the flow at a height of 3.35 m 
above the inlet. The indicated values of the mean volume concentration are those 
at the inlet of the pipe, and the transition occurs, as judged by eye, approximately 
1 m above (+),just above (A), and approximately 1 m below (0) the probe. What 
is observed is that under stable conditions (+) the bubbly flow is fairly uniform, but 
that just below the point of transition (A) the radial distribution (that of the gas 
velocity in particular) becomes of parabolic shape. This would suggest that in the 
initial stage of the transition there is an instability to radial disturbances rather than 
to planar disturbances, as is assumed in Batchelor’s theory. On the other hand, what 
is judged by eye to be the point of transition may just as well be located a little above 
the point where the actual instability occurs. The parabolic profile may then be the 
result of a second stage of an instability to planar disturbances (see Batchelor 1993). 
At present there does not exist a satisfactory three-dimensional description of the 
dynamics of bubbly flows to settle this question; a deeper experimental investigation 
into the matter proved to be too difficult. 

A third observation can be made from figure 10. Here it is puzzling that there is 
no indication of a downward trend in the diffusivity 9 as the volume concentration 
approaches the critical value. The explanation could be that the linearly stable flow 
is unstable to nonlinear disturbances : the imposed disturbances, whose propagation 
properties in the homogeneous flow yield the values of 9, may cause an instability to 
set in for values less than q5c;  the functional behaviour of 9 close to 4, is then difficult 
to detect. Further analysis of the evolution equations of 93 should clarify this point. 
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FIGURE 12. Radial profiles of the local volume concentration (a,b) and the local mean bubble velocity 
(c,d) close to the point of instability of a uniform bubbly flow; stagnant flow (a,c), superficial liquid 
velocity 0.08 m s-' (b,d). Data were taken 3.35 m above the pipe inlet; the transition occurs 
approximately I m above (+),just above (A), and 1 m below (0) the measuring station. Values of 
the mean volume concentration at the pipe inlet, (a,(): 12'/0 (+), 18% (A), 23% (0); (b,d):  24% 
(+), 28% (A), 32% (0). 

9. Conclusions 
We have shown that Batchelor's equations for the propagation of planar concen- 

tration disturbances in fluidized beds also apply to bubbly flows. The behaviour 
of long, finite-amplitude gas volume concentration waves is governed by Burgers' 
equation, modified by a source term that accounts for bubble growth. The observed 
wave profiles of expansion shock waves and periodic waves compare well with well- 
known solutions to Burgers' equation, and could therefore be used to measure 'the 
diffusivity of concentration waves'. There is evidence that for low values of the gas 
volume concentration (less than 10%) the dominant contribution to this diffusivity 
comes from the 'bulk elasticity' of the bubbles; for larger values of the concentration 
acceleration-reaction ('added mass') effects become important. 

Batchelor's criterion for the onset of instabilities in uniform dispersions effectively 
says that these flows lose stability to planar concentration disturbances at a value 
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of the concentration for which the diffusivity becomes negative. We have derived 
evolution equations for the behaviour of weakly nonlinear disturbances in dispersions 
for which the volume concentration of the particles or bubbles is close to the critical 
value. These evolution equations are similar to those derived by Hayakawa et al. 
(1994), which lends support to these authors’ criticism of other descriptions that have 
appeared in the literature. 

Our observations of the onset of flow transition in bubbly flows seem to disagree 
with Batchelor’s theory. For instance, it is found that the critical volume concentration 
differs with the superficial liquid velocity and the location where the instability sets in. 
In the experiments the bubble size changes with the liquid flow rate and the gas flow 
rate, and with the height in the pipe. Estimates of the parameters that determine the 
diffusivity of concentration waves for dispersions of small, approximately spherical 
bubbles suggest that the critical gas volume concentration depends strongly on the 
size of the bubbles, but this only partially resolves the observed discrepancy. 

Batchelor (1993) explains that gas-fluidized beds are unstable to transverse distur- 
bances as soon as they become unstable to planar disturbances. On the other hand, 
the experiments of El-Kaissy & Homsy (1976) and Didwania & Homsy (1981) show 
that in liquid-fluidized beds wave trains of considerable amplitude may develop. Our 
experiments suggest that in a bubbly flow the radial volume concentration profile first 
changes roughly from uniform into one with parabolic shape, before the bubbly flow 
becomes turbulent. We were unable to decide whether this change of profile is the first 
stage of the flow transition (thus contradicting Batchelor’s 1988 theory, which assumes 
that a dispersion first becomes unstable to planar disturbances), or whether it is the 
second stage of the flow transition (as in Batchelor 1993). Wave trains of the type that 
have been found in liquid-fluidized beds could not be observed in our experiments; 
rather the uniform bubbly flow seemed to change almost at once into an agitated, kind 
of turbulent, flow. An analysis of what precisely happens awaits the formulation of 
a satisfactory three-dimensional theory; experimental verification will still be difficult 
because the behaviour of the flow is very sensitive to the size of the bubbles. 
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